a certain -generalized principally quasi-baer subring of the matrix rings
نویسندگان
چکیده
for a fixed positive integer , we say a ring with identity is n-generalized right principally quasi-baer, if for any principal right ideal of , the right annihilator of is generated by an idempotent. this class of rings includes the right principally quasi-baer rings and hence all prime rings. a certain n-generalized principally quasi-baer subring of the matrix ring are studied, and connections to related classes of rings (e.g., p.q.-baer rings and n-generalized p.p. rings) are considered1
منابع مشابه
The Baer Radical of Generalized Matrix Rings
In this paper, we introduce a new concept of generalized matrix rings and build up the general theory of radicals for g.m.rings. Meantime, we obtain r̄b(A) = g.m.rb(A) = ∑ {rb(Aij) | i, j ∈ I} = rb(A)
متن کاملGeneralized Baer rings
In [15], Kaplansky introduced Baer rings as rings in which every right (left) annihilator ideal is generated by an idempotent. According to Clark [9], a ring R is called quasi-Baer if the right annihilator of every right ideal is generated (as a right ideal) by an idempotent. Further works on quasi-Baer rings appear in [4, 6, 17]. Recently, Birkenmeier et al. [8] called a ring R to be a right (...
متن کاملA Generalization of Baer Rings
A ringR is called generalized right Baer if for any non-empty subset S of R, the right annihilator rR(S ) is generated by an idempotent for some positive integer n. Generalized Baer rings are special cases of generalized PP rings and a generalization of Baer rings. In this paper, many properties of these rings are studied and some characterizations of von Neumann regular rings and PP rings are ...
متن کاملThe unit sum number of Baer rings
In this paper we prove that each element of any regular Baer ring is a sum of two units if no factor ring of R is isomorphic to Z_2 and we characterize regular Baer rings with unit sum numbers $omega$ and $infty$. Then as an application, we discuss the unit sum number of some classes of group rings.
متن کاملA CHARACTERIZATION OF BAER-IDEALS
An ideal I of a ring R is called right Baer-ideal if there exists an idempotent e 2 R such that r(I) = eR. We know that R is quasi-Baer if every ideal of R is a right Baer-ideal, R is n-generalized right quasi-Baer if for each I E R the ideal In is right Baer-ideal, and R is right principaly quasi-Baer if every principal right ideal of R is a right Baer-ideal. Therefore the concept of Baer idea...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
علومجلد ۱۸، شماره ۵۱، صفحات ۸۹-۹۸
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023